

BUDDHA INSTITUTE OF TECHNOLOGY, GIDA, GORAKHPUR DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

PRE-AKTU EXAM (EVEN SEMESTER 2022-23)

JULY-2023

Course:	B.Tech		Semester:	4
Subject:	Signal System		Subject Code:	KEC - 403
M.M.	100	Time:	3:00 hrs	Roll No

SECTION-A

1. Attempt all questions. Each questions carry equal marks.		Marks: 10*2=20	
Q. No.	D. Question	Level of	Course
Q. NO.		Taxonomy	Outcome
a.	State Nyquist Criteria.	L2	C01
b.	Determine the fundamental period of the following, if the signal is periodic $x(t) = cos(\pi t) + cos(2\pi t)$.	L2	C01
c.	Find the z transform of u(n).	L2	C02
d.	Find the z transform of u(n).	L2	C02
e.	What is Aliasing? What is an antialiasing filter.	L2	C03
f.	Write down Dirichlet conditions for the existence of Fourier Transform.	L2	C03
g.	Draw the signal $u(n) - u(n-3)$.	L2	C04
h.	State convolution property of the Laplace Transform.	L2	C04
i.	State the expression of Convolution Integral.	L2	C05
ј.	Explain time invariant and Causal System.	L2	C05

SECTION-B

2. Attempt ALL questions. Each questions carry equal marks.		Marks: 3*10= 30		
Q. No.	Question	Level of Taxonomy	Course Outcome	
a.	Consider x(t) = Cos ($2\pi f_0 t$). Determine it is a power signal or energy signal.	L2	C01	
	or			
a.	Determine the even and odd components of the following signals (i) $x(t) = cos(t) + sin(t) + cos(t)$. $sin(t)$ (ii) $x(n) = \{1,1,1,1,1\}$	L2	C01	
b.	Find the Fourier transform of the signal given below: $x(t) = \mathbb{P}^{-at}u(t)$ and sketch the magnitude and phase spectrum.	L2	C02	
	or			
b.	Find Inverse Laplace transform of (i) $X(s) = \frac{s+3}{s^2+3s+2}$ (ii) $X(s) = \frac{2s-1}{s^2+2s+1}$	L2	C02	
с.	(i) Find Fourier transform of the signal $x(t) = e^{-a t }$	L2	C03	

SECTION-C

3. Attempt ANY ONE questions. Each questions carry equal marks.		Marks: 1*10=10	
Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Find Laplace transform of the following given signals and define their RoCs (i) $x(t) = e^{-t}u(t) + e^{2t}u(-t)$ (ii) $x(t) = (2e^{2t} + 3e^{3t})u(-t)$	L2	C01
b.	Find Impulse response of the system described by the equation. 2y'(t) + 3y(t) = x(t)	L2	C01

4. Attempt ANY ONE questions. Each questions carry equal marks.		Marks: 1*10=10	
Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Find Z-transform of the given signal.	L2	C02
	$X(n) = \left(\frac{1}{2}\right)^n u(n) + \left(\frac{1}{3}\right)^n u(n) $ (ii) $x(n) = a^n u(n)$		
b.	Implement the Convolution integral on the signals $x(t) = e^{-2t} u(t)$ and $h(t) = u(t)$.	L2	C02

5. Attempt ANY ONE questions. Each questions carry equal marks.

Level of Course Q. No. Question Taxonomy Outcome Implement the Convolution sum on the signals $x(n) = a^n u(n)$ and L2 C03 a. h(n) = u(n).b. Using Fourier transform, find the convolution of L2 C03 $x_1(t) = ?^{-2t} ?(?), x_2(t) = ?^{-3t} ?(?)$

Marks: 1*10=10

Marks: 1*10=10

Marks: 1*10=10

6. Attempt ANY ONE questions. Each questions carry equal marks.

Q. No.	Question	Level of Taxonomy	Course Outcome
a.	Find the continuous time Fourier transform of the	L2	C04
	Gate/Rectangular signal. Also plot its magnitude response.		
b.	Determine the total response of the differential	L2	C04
	equation		
	$\frac{d^2 y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = x(t)$		
	Where $y(0)=3$, $y'(0)=4$, $x(t)=4e^{-2t}$ and $t \ge 0$.		

7. Attempt ANY ONE questions. Each questions carry equal marks.

Q. No.QuestionLevel of
TaxonomyCourse
Outcomea.Find Z-Transform of the signal $x(t) = cos (n\omega) u(n)$ L2C05b.State and prove the Sampling theorem and discuss the effect of
undersampling.L2C05

L1-> Remembering, L2-> Understanding, L3-> Applying, L4-> Analyzing, L5-> Evaluating, L6-> Creating